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On the Accuracy of Scalar Approximation
Technique in Optical Fiber Analysis
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Abstract-The accuracy of the seafar approximation teefmique in optieat

fiber analysis is investigated in detail. The scalar approximate solutions are

compared numerkaity with the vector (rigorous) SOMOOS for various

linear refraetive-index distributio~ and severaf intereating featurea whieb

are of praettad importance are pointed out.

I. INTRODUCTION

SINCE exact theoretical treatment of optical fibers is

difficult and laborious, appropriate approximation

techniques have been developed. Among them, scalar

approximation analysis is one of the most widely used

techniques. To the authors’ knowledge, however, the ac-

curacy or the precision of scalar approximation method

has not yet been discussed in detail. In the present paper,

the scalar approximate solutions are compared numeri-

cally with the vector (rigorous) solutions for various

modes of propagation in the cylindrical fibers of various

linear refractive-index distributions, and several interest-

ing features of scalar approximation analysis which are of

practical importance are pointed out.

II. SCALAR APPROXIMATION ANALYSIS

To treat the circular-cylindrical optical fiber by scalar

approximation technique, let us use the circular-cylindri-

cal system of coordinates (r, 0, z) whose z-axis coincides

with the center axis of the fiber. It is assumed that the

permittivity c of the fiber depends only upon the distance

r from the center axis, and the permeability is equal to

that of vacuum pv Maxwell’s equations can then be

expressed in the following form in terms of the transverse

electric-field component E, [1].

[)V2E, +(a2~p0–/32)E1+ V :.E, =0. (1)

Let us introduce further the following three approxima-

tion conditions.

i) The fluctuation in the permittivity distribution c(r) is

small enough in comparing with that of the transverse

electric-field component Er

(2)
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ii) The magnitude of the discontinuity in c,&, across

the discontinuity boundary is sufficiently small so that the

following condition is satisfied:

(3)
1’ Qxrlaxl

where E~~X is the maximum value of the electric field

whereas Ed,. is the value of the electric field at the

discontinuity boundary of c.

iii) The variation of the fields in a transverse direction

is small enough in comparing with that in the longitudinal

direction.

Applying these three approximation conditions into (l),

we get the following scalar wave equation:

V2E, + (GJ2qLo– @2)Et =0. (4)

The boundary conditions can be stated, in our case, that

both El and V “Et are continuous across the discontinuity

boundary.

A transverse Cartesian component of the field is

assumed to be expressed in a form

E= ll(r)exp[j(wt – me – /3z) ] (5)

where R(r) is a scalar function of r alone, u is an angular

frequency of sinusoidal time dependence, ~ is a propaga-

tion constant of the guided mode, and m is an integer

representing a number of the field variation in the

aximuthal direction 4. Substituting (5) into (4), the equa-

tion for the scalar function l?(r) is derived as follows:

()( m2
~-$ r$ + C02qJO-f12— —

r2 )
R=O. (6)

In the following analysis, the permittivity distributions are

regarded approximately as the muhilayer structure as

shown in Fig. 1. The scalar wave equation in each layer

for which the permittivity is given by c; can be expressed

as

The foregoing equation can be solved exactly, and the

propagation constant ~ is determined to be satisfied that

R and dR/dr are continuous across the discontinuity

boundary of permittivity.
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Fig. 1. Multilayer approximation of the permittivity distribution.

For TE mode, the following equations are derived from

Maxwell’s equations by using E== 0.

V2H, + (Jc/Lo– p’pf, =0 (8)

V .Ht
Hz=—.

J8
(lo)

Equation (8) must be solved with the boundary conditions

that both Ht and V -Ht change continuously. The forego-

ing differential equation (8) is the same with the scalar

approximate wave equation (4), and the boundary condi-

tions stated above are also the same with that in the case

of scalar approximation analysis. Therefore, we can get

the solution for TE mode by solving the scalar equation

without the error due to the scalar approximation.

111, ACCURACY OF SCALAR APPROXIMATION

ANALYSIS

In this section, the scalar approximation solutions are

compared numerically with the results of vector (rigorous)

analysis. In order to discuss the effects of a rate of index

distribution and an amount of discontinuity of index

distribution separately, we shall assume the following lin-

ear refractive-index distribution:

~ n,(l-2A)’’2=n2, a<r

where a is the radius of the core, n ~ and n2 are the

refractive indices at the center axis and the cladding of

the fiber, respectively, p is a factor which characterizes the

linear refractive-index distribution profile, and A=(JZ1 –

n2)/ n 1 represents the relative refractive-index difference

between the core nl (at the center axis) and the cladding

n2. The normalized propagation constant ( ~ – &J2)/ ko(nl

– n2) where lcO is a wave number in free space is calcu-

lated numerically by a vector (rigorous) analysis and a

scalar (approximation) analysis for various modes of

propagation and for various normalized frequency T

which is defined by

T2=2k~ f {n(r)’ -n~}rdr. (12)
‘n(r)~n2

In both analyses, the permittivity distribution in a core

region is represented approximately by multiple layers of

lo-,~
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Fig. 2. The error in the propagation constant due to the scalar ap-
proximation for Hf3,L1mode. (Step-index fiber.)
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Fig. 3. The error in the propagation constant due to the scalar ap-
proximation for HE1. mode. (Step-index fiber.)

different constant refractive-indices as shown in Fig. 1. So

that the matrix method [2] can be employed. In the

following numerical evaluation, the core region is divided

into fifty layers, and the propagation constants 6.X and &

of various modes are calculated by vector (rigorous) anal-

ysis and scalar (approximation) analysis, respectively. The

error of the multilayered approximation for both analyses

is of the order of 10– G or less in the case of fifty layers

division.
One of the interesting features obtained from the

numerical calculations is that the error I & – 13,XI/ ko(n 1–

nz) is approximately proportional to the core-cladding

refractive-index difference A within the range of A= 0.005

-0.03.

Figs. 2 through 5 show the error of the normalized

propagation constant versus the normalized frequency T

for various HE and EH modes in the step-index fiber

(p= 0). The magnitude of the error decreases as the
frequency increases and the maximum value of the error

decreases a little bit with increasing the mode number.

The error becomes very small at the vicinity of the cutoff

point except for EIE~l(m > 2) modes, since the cutoff

values obtained from the scalar solutions [3] coincide with

those obtained from vector solutions [4].
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Fig. 4. The error in the propagation constant due to the seafar ap
proximation for EHnl mode. (Step-index fiber,)

,0-3 , 1 1 1
0 5 $) 15 20

Fig, 5. The error in the propagation constant clue to the scalar ap
proximation for EH1. mode. (Step-indexfiber.)

Fig. 6 shows the error of the normalized propagation

constant versus the normalized frequency for HE1 ~ mode

in the various linear refractive-index fibers. In the case of

the step-index (p= O) fiber, the error occurs only due to

the step discontinuity of the refractive-index distribution.

In the case of p= 1, on the other hand, the error comes

from the gradient of the refractive-index distribution

alone. Therefore, we can see from Fig. 6 that the error due

to the step discontinuity decreases more rapidly with

increasing the frequency in comparison with the error due

to the gradient of the refractive-index distribution. In

other words, the most of the error may be caused by the

gradient of the refractive-index distribution at the higher

frequency.

Fig. 7 shows the error of the normalized propagation

constant versus the normalized frequency for TMOI mode

in the various linear refractive-index fibers. Except the

fiber with p= 0.5, the features of the error for Th& mode

are similar to that for HE I, mode.

Table I shows the numerical values of the error of the

normalized propagation constant and the approximation

conditions i), ii), and iii) stated in the preceding section,

Again we can see from this table that the error due to the

discontinuity of the refractive-index distribution ii) de-
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Fig. 6. The error in the propagation eonatant due to the scalar ap-
proximation for HEI, mode in the various linear refractive-index
fibers.
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Fig. 7. The error in the propagation constant due to the $ealar ap
proximation for TIv& mode in the various finear refractive-index.
}ibers.

TABLE I
THS ERROR m mE PROPAGATION CONSTANT OF LINRAR

REmAcnvs-INDEx FIBERSDUBTO ‘m SCALARAPPROXIMATION
FOR HE,, MODE WITH VARJOUS fiPROXIMATTON CONDITIONS.

A =0.005, u= ~=

A A
0 0 0.5 1 1.5

T 2 10 2 10 2 10 2 10

WI 1.528 2.185 2.025 5.552 2.9S7 8,823 4,517 13,24

Ba 19.94 99.98 24,41 122.3 34. s1 173.0 51.76 2s9.4

2Ap
[i) ~ o 0 2,469 0.9006 3.348 1.133 3.321 1.133

,10-3

(
6E Edi5

11) ~~ I 49.6 11.9 20.7 0,444 0 0 2.90 <10-5
Max
.10-4

(iii)
;

7.663 2.1s5 S.296 4.540 8.655 5.100 S.722 5.102
xln-1.. I I 1 I 1 1 1 I J

%-6
--?-.sL
kc(n, -n2:, fibq I14,1 0,443 7.61 0.496 5.44 0.790 6.40 0.785

-.. , , , , ,
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creases much more rapidly with increasing the frequency core–cladding interface. The accuracy of the scalar ap-

than that caused by the gradient of the refractive-index proximation analysis for arbitrary refractive-index distrib-

distribution i). utions other than the linear refractive-index distribution

IV. CONCLUSION
may be estimated with the aid of the results shown in this

paper.

The accuracy of the scalar approximation technique in
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Analysis of Open Dielectric Waveguides
Using Mode-Matching Technique and

Variational Methods
RAJ MITTRA, FELLOW, IEEE, YUN-LI HOU, MEMBER, IEEE, AND VAHRAZ JAMNEJAD

Afkwet—Tbe mtie-nmtcbing technique is employed for computing the

propagation constants and field distributions of an inverted strip dielectric

wavegufde, The resufts derived in this manner are further improved by

using variational formulas expressly designed for open dielectric wave-

guides. JJksfrstive numericaf results are presented and compared with so

experimental measurement as well as those based on approximate methods

found fn the literature.
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I. INTRODUCTION

R ECENT INTEREST in the 30 –300-GHz range,
which has remained relatively unexplored hitherto,

has led to the investigation of low-loss low-cost dielectric

waveguide designs [ 1]–[4] suitable for integrated circuit

applications in this frequency range.

In order to develop reliable designs for uniform dielec-

tric guides as well as for active and passive components

constructed from these waveguides, it is extremely im-
portant to have the capability of theoretically predicting

the performance of these circuit elements and transmis-

sion media.
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