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On the Accuracy of Scalar Approximation
Technique in Optical Fiber Analysis

KATSUMI MORISHITA, MEMBER, 1EEE, YASUYUKI KONDOH, anp NOBUAKI KUMAGALI, SENIOR
MEMBER, IEEE

Abstract—The accuracy of the scalar approximation technique in optical
fiber analysis is investigated in detail. The scalar approximate solutions are
compared numerically with the vector (rigorous) solutions for various
linear refractive-index distributions, and several interesting features which
are of practical importance are pointed out.

I. INTRODUCTION

INCE exact theoretical treatment of optical fibers is

difficult and laborious, appropriate approximation
techniques have been developed. Among them, scalar
approximation analysis is one of the most widely used
techniques. To the authors® knowledge, however, the ac-
curacy or the precision of scalar approximation method
has not yet been discussed in detail. In the present paper,
the scalar approximate solutions are compared numeri-
cally with the vector (rigorous) solutions for various
modes of propagation in the cylindrical fibers of various
linear refractive-index distributions, and several interest-
ing features of scalar approximation analysis which are of
practical importance are pointed out.

II. SCALAR APPROXIMATION ANALYSIS

To treat the circular-cylindrical optical fiber by scalar
approximation technique, let us use the circular-cylindri-
cal system of coordinates (r,6,z) whose z-axis coincides
with the center axis of the fiber. It is assumed that the
permittivity € of the fiber depends only upon the distance
r from the center axis, and the permeability is equal to
that of vacuum p, Maxwell’s equations can then be
expressed in the following form in terms of the transverse
electric-field component E, [1].

(1)

Let us introduce further the following three approxima-
tion conditions.

i) The fluctuation in the permittivity distribution ¢(r) is
small enough in comparing with that of the transverse
electric-field component E,

VZE,+ (w%epy— B*)E, + V{ —V-E—EE,} =0,

)
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i1) The magnitude of the discontinuity in ¢,d¢, across
the discontinuity boundary is sufficiently small so that the
following condition is satisfied:
% Ey;

<1

©)

€ Emax

where E_, is the maximum value of the electric field
whereas E . is the value of the electric field at the
discontinuity boundary of e.

iii) The variation of the fields in a transverse direction
is small enough in comparing with that in the longitudinal
direction.

Applying these three approximation conditions into (1),
we get the following scalar wave equation:

V2E, +(w’epo— B?) E,=0. 4

The boundary conditions can be stated, in our case, that
both E, and V-E, are continuous across the discontinuity
boundary.

A transverse Cartesian component of the field is
assumed to be expressed in a form

E = R(r)exp[ j(wt—mb— fz)] (%)

where R(r) is a scalar function of r alone, w is an angular
frequency of sinusoidal time dependence, B is a propaga-
tion constant of the guided mode, and m is an integer
representing a number of the field variation in the
aximuthal direction #. Substituting (5) into (4), the equa-
tion for the scalar function R(r) is derived as follows:

1 d{ dR ) , m?

—— — — —— e =(),

. dr(r dr) (w €y — B = R=0 6)
In the following analysis, the permittivity distributions are
regarded approximately as the multilayer structure as
shown in Fig. 1. The scalar wave equation in each layer
for which the permittivity is given by ¢ can be expressed
as

1 d{ dR s , m?
——r— ]+ o—B°—— |R=0.

rdr (r dr ) (w ko~ B r? 0 )
The foregoing equation can be solved exactly, and the
propagation constant 8 is determined to be satisfied that
R and dR/dr are continuous across the discontinuity
boundary of permittivity.
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Fig. 1. Multilayer approximation of the permittivity distribution.

For TE mode, the following equations are derived from
Maxwell’s equations by using E, =0.

V?H, + (w%po— B*)H,=0 (8)
E,=—f°-59iz><H, (9)

V-H
.= 7‘1 (10)

Equation (8) must be solved with the boundary conditions
that both H, and V-H, change continuously. The forego-
ing differential equation (8) is the same with the scalar
approximate wave equation (4), and the boundary condi-
tions stated above are also the same with that in the case
of scalar approximation analysis. Therefore, we can get
the solution for TE mode by solving the scalar equation
without the error due to the scalar approximation.

III. ACCURACY OF SCALAR APPROXIMATION
ANALYSIS

In this section, the scalar approximation solutions are
compared numerically with the results of vector (rigorous)
analysis. In order to discuss the effects of a rate of index
distribution and an amount of discontinuity of index
distribution separately, we shall assume the following lin-
ear refractive-index distribution:

1/2
n1-20(2))"
n(1-24)""?=n,,

where a is the radius of the core, n, and n, are the
refractive indices at the center axis and the cladding of
the fiber, respectively, p is a factor which characterizes the
linear refractive-index distribution profile, and A~(n,—
ny)/n, represents the relative refractive-index difference
between the core n, (at the center axis) and the cladding
n,. The normalized propagation constant ( 8— kyn,)/ ko(n,
—n,) where k, is a wave number in free space is calcu-
lated numerically by a vector (rigorous) analysis and a
scalar (approximation) analysis for various modes of
propagation and for various normalized frequency T
which is defined by

n(r)= an

a<r

T2=2k5f

n(ry=zn,

{n(r)*—n3}rdr. (12)

In both analyses, the permittivity distribution in a core
region is represented approximately by multiple layers of
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Fig. 2. The error in the propagation constant due to the scalar ap-
proximation for HE,, mode. (Step-index fiber.)
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Fig. 3. The error in the propagation constant due to the scalar ap-

proximation for HE;, mode. (Step-index fiber.)

different constant refractive-indices as shown in Fig. 1. So
that the matrix method [2] can be employed. In the
following numerical evaluation, the core region is divided
into fifty layers, and the propagation constants §,, and S,
of various modes are calculated by vector (rigorous) anal-
ysis and scalar (approximation) analysis, respectively. The
error of the multilayered approximation for both analyses
is of the order of 107° or less in the case of fifty layers
division.

One of the interesting features obtained from the
numerical calculations is that the error | B, — B..|/ ko(n, —
ny) is approximately proportional to the core-cladding
refractive-index difference A within the range of A=0.005
~0.03.

Figs. 2 through 5 show the error of the normalized
propagation constant versus the normalized frequency 7
for various HE and EH modes in the step-index fiber
(p=0). The magnitude of the error decreases as the
frequency increases and the maximum value of the error
decreases a little bit with increasing the mode number.
The error becomes very small at the vicinity of the cutoff
point except for HE, ,(m>2) modes, since the cutoff
values obtained from the scalar solutions [3] coincide with
those obtained from vector solutions [4].
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Fig. 4. The error in the propagation constant due to the scalar ap-
proximation for EH,,; mode. (Step-index fiber,)
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Fig. 5. The error in the propagation constant due to the scalar ap-

proximation for EH,,, mode. (Step-index fiber.)

Fig. 6 shows the error of the normalized propagation
constant versus the normalized frequency for HE,; mode
in the various linear refractive-index fibers. In the case of
the step-index (p=0) fiber, the error occurs only due to
the step discontinuity of the refractive-index distribution.
In the case of p=1, on the other hand, the error comes
from the gradient of the refractive-index distribution
alone. Therefore, we can see from Fig. 6 that the error due
to the step discontinuity decreases more rapidly with
increasing the frequency in comparison with the error due
to the gradient of the refractive-index distribution. In
other words, the most of the error may be caused by the
gradient of the refractive-index distribution at the higher
frequency.

Fig. 7 shows the error of the normalized propagation
constant versus the normalized frequency for TM,, mode
in the various linear refractive-index fibers. Except the
fiber with p==0.5, the features of the error for TM,; mode
are similar to that for HE,; mode.

Table I shows the numerical values of the error of the
normalized propagation constant and the approximation
conditions 1), ii), and iii) stated in the preceding section.
Again we can see from this table that the error due to the
discontinuity of the refractive-index distribution ii) de-
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Fig. 6. The error in the propagation constant due to the scalar ap-
proximation for HE,; mode in the various linear refractive-index
fibers.
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Fig. 7. The error in the propagation constant due to the scalar ap-
proximation for TM,, mode in the various linear refractive-index
fibers.

TABLE 1
THE ERROR IN THE PROPAGATION CONSTANT OF LINEAR
REFRACTIVE-INDEX FIBERS DUE TO THE SCALAR APPROXIMATION
FOR HE,; MODE WITH VARIOUS APPROXIMATION CONDITIONS,

A=0.005, u="\/k3n?— B>

3 0 0.5 1 1.5
T 2 10 2 10 2 10 2 10
ua 1.528| 2.185{ 2.025 | 5,552 | 2.987 | 8,823 | 4,517 { 13.24
Ra 19,94 | 99,98 | 24,41 122.3] 34,51 173,0 | 51.76 | 259.4
iy e 0 0 |[2.469]0.9006| 3.348  1.133 | 3.321 [ 1.133
ua ,i0-3
ge Ldis
(11)'—-—— 49.6 | 11,9 | 20.7 | 0,444 © 0 2.90 | <10-5
e E
max
X104
(iii) 7.663 | 2.185] 8.296 | 4.540 | 8,655 5.100 | 8.722 5.102
8 x10-2
B -8
3% 14,1 | 0,443 7.61 [ 0.496{ 5.44 | 0.790} 6.40 | 0.785
kc(nrnz)l .
X
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creases much more rapidly with increasing the frequency
than that caused by the gradient of the refractive-index
distribution i).

IV. CoNcCLUSION

The accuracy of the scalar approximation technique in
optical fiber analysis is discussed numerically in detail for
various modes of propagation in the cylindrical fiber of
various linear refractive-index distributions. The error due
to the scalar approximation depends on the frequency, the
refractive-index distribution profile, and the mode of
propagation. It is found that, for a given mode and the
specific refractive-index distribution, the error increases
proportionally with the refractive-index difference A be-
tween core and cladding. It is shown that the error
associated with the gradient of linear refractive-index dis-
tribution decreases with frequency faster than that
associated with the discontinuity of refractive-index at the

core—cladding interface. The accuracy of the scalar ap-
proximation analysis for arbitrary refractive-index distrib-
utions other than the linear refractive-index distribution
may be estimated with the aid of the results shown in this

paper.
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Analysis of Open Dielectric Waveguides
Using Mode-Matching Technique and
Variational Methods
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Abstract—The mode-matching technique is employed for computing the
propagation constants and field distributions of an inverted strip dielectric
waveguide, The results derived in this manner are further improved by
using variational formulas expressly designed for open dielectric wave-
guides. Mlusirative numerical results are presented and compared with an
experimental measurement as well as those based on approximate methods
found in the literature.
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I. INTRODUCTION

ECENT INTEREST in the 30-300-GHz range,

which has remained relatively unexplored hitherto,
has led to the investigation of low-loss low-cost dielectric
waveguide designs [1]-[4] suitable for integrated circuit
applications in this frequency range.

In order to develop reliable designs for uniform dielec-
tric guides as well as for active and passive components
constructed from these waveguides, it is extremely im-
portant to have the capability of theoretically predicting
the performance of these circuit elements and transmis-
sion media.
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